Project Details


The proposal aims to explore the interplay of dynamics and variational inequalities. Variational inequalities provide an effective means to derive properties of solutions of evolution equations and likewise, evolution equations can be used to derive variational inequalities. Exploiting this interplay has been very fruitful in the past, and the investigators plan to approach various problems using this perspective. One is to find correction terms of various examples of the Hardy-Littlewood-Sobolev inequality by exploiting a surprising connection to the porous medium equation and to the Gagliardo-Nirenberg inequality. In particular, a correction term for the logarithmic Hardy-Littlewood-Sobolev inequality will lead to an improved understanding of the solutions of the Keller-Segel model describing the chemotaxis of certain bacteria. A similar philosophy applies as well to certain problems in kinetic theory, with the plan to derive quantitative estimates on speed of approach to equilibrium for some inhomogeneous master equations of Kac type. These investigations tie in with analogous questions in quantum mechanics. Here the PI's plan to prove hypercontractivity estimates for Lindblad operators that describe dissipative quantum mechanical systems, with the aim to obtain quantitative estimates on the speed of approach to equilibrium as well. Another circle of problems is proving Lifshitz tails in the random displacement model. The aim there is to understand the conductivity properties of materials. Many phenomena in science and technology can be modeled by evolution equations. An interesting example, treated in this proposal, is the Keller Segal model, that models the aggregation, or the absence thereof, in the motion of bacteria. Understanding the behavior of solutions of these equations is both biologically and mathematically interesting. Likewise, it is widely observed thatn systems of many interacting particles, either classical or quantum mechanical, evolve toward an equilibrium, and they do this at a certain speed, often largely independent of the number of particles. Understanding this, and determining this speed is one of the objects of this research. Another question of great interest is what distinguishes a conductor from an insulator. There are simple models in quantum mechanics that are supposed to exhibit these kind of behavior. While it is impossible to understand these phenomena by exact computations, using mathematical techniques notably from analysis, the PI's aim to understand these processes better. Conversely, applied problems, e.g., the porous medium equations that describes the seepage of water in dams, can be used to find interesting mathematical facts, which in turn lead to improved understanding of other problems. It is this interplay of pure and applied mathematics that is the focus of the PI's research and it has been an excellent way to educate graduate students as well as undergraduates, and to draw them into mathematical research.
Effective start/end date6/1/095/31/12


  • National Science Foundation (National Science Foundation (NSF))

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.