Project Details
Description
Project Summary
The development of chromosome conformation capture techniques such as Hi-C have made it possible to
identify domains of interacting chromatin within the nucleus at high resolution across the entire genome. These
domains are known as Topologically Associating Domains (TADs) and their boundaries act as insulator
elements. While it is now straightforward to identify such domains, there is a gap in knowledge because the
genetic control of TAD boundary strength and location is not fully understood, nor is it clear how variation in
these boundary properties affects molecular phenotypes such as gene expression. The long-term goal of this
applicant’s laboratory is to understand the evolutionary processes that lead to changes in genome organization
within and between species. The overall objective of this project is to identify and functionally characterize the
genetic determinants of TAD boundary strength within Drosophila melanogaster, as well as the determinants of
boundary gain and loss between D. melanogaster and closely related species. Preliminary data produced in
the applicant’s laboratory suggests that there is variation in TAD boundary strength among D. melanogaster
individuals from the Drosophila Genetic Resource Panel (DGRP) and that novel TAD boundaries are present
even between the closely related species of D. melanogaster and D. yakuba. The rationale for the proposed
research is that understanding the genetic basis of TAD boundaries will provide insight into how variation in 3D
genome organization is related to the emergence of novel phenotypes as well as disease states. The objective
of this project will be achieved by pursuing three specific aims: 1) Identify sequence variants that affect TAD
boundary strength using association mapping; 2) Determine how TAD boundaries evolve at novel locations in
the genome; and 3) Functionally characterize candidate variants using CRISPR in D. melanogaster. The
DGRP, which was specifically developed as a resource for mapping quantitative traits, will be used to identify
sequence variants associated with TAD boundary strength, whereas 13 Drosophila species from the
melanogaster group will be used to identify lineage-specific sequence substitutions involved in the formation of
novel TAD boundaries. Candidate causal sequences will be validated using CRISPR genome editing to
determine their effect on TAD boundary strength and location. The proposed research is innovative because it
represents a substantial departure from the status quo: instead of testing for enrichment of specific genomic
features within TAD boundaries, this project proposes to take advantage of natural variation within and
between species of Drosophila. One of the major goals of the field is to ultimately predict TAD boundary
strength and location from DNA sequence alone. The proposed research is significant because it will bring us
closer to this goal by increasing our understanding of how TAD boundaries originate and how they contribute
to variation in gene expression levels both within and between species.
Status | Finished |
---|---|
Effective start/end date | 9/18/18 → 8/31/23 |
Funding
- National Institute of General Medical Sciences: $325,500.00
- National Institute of General Medical Sciences: $325,500.00
- National Institute of General Medical Sciences: $325,500.00
- National Institute of General Medical Sciences: $325,500.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.