Iron Dependent Membrane Vesicle Production In M. Tuberculosis


Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the oldest known human maladiesand a major cause of mortality worldwide, killing 1.5 million people each year. Despite the widespread use ofan attenuated live vaccine and several antibiotics, there is currently more TB than ever before, with one third ofthe world population infected with Mtb. This dire situation is compounded by increasing prevalence ofantibiotic-resistant Mtb, whose emergence is facilitated by the lengthy course of antibiotic treatment and theability of Mtb to persist in the host. During infection, the host scavenges essential metal ions, particularly iron,as part of an antimicrobial strategy known as “nutritional immunity”. In response to iron limitation, pathogens,including Mtb, synthesize not only high affinity iron sequestering molecules, but also virulence determinantsand other factors that allow the pathogen to withstand the immune attack. Accumulating evidence shows thatpathogenic bacteria concentrate and pack virulence factors into small membrane vesicles (MVs) that arereleased into the extracellular milieu and have the capacity to influence pathogen-host interplay. In particular, itwas shown recently that Mtb also produces and releases MVs, which contain immunologically activemolecules. Thus, MVs might be a tool used by Mtb to overcome host defenses and, as such, are potentialtargets of therapeutic interference. Furthermore, immunization with isolated MVs elicits a protective immuneresponse against TB in mice. Although these findings indicate that MVs play an important role in host-pathogen interactions, very little is known regarding the biogenesis, regulation and functions of Mtb MVs. Ourfindings indicate that in response to iron limitation Mtb significantly enhances production of MVs and modifiestheir content. To identify factors involved in MV biogenesis in Mtb, we have designed a genetic screen basedon the properties of MVs produced under iron limitation to identify mutants with altered MVs production. Inaddition to identifying genes required for normal MV formation, the availability of these mutants will facilitateeffective efforts to elucidate the relevance of MV production for Mtb pathogenesis. In a complementaryapproach, we will test the hypothesis that under conditions of iron limitation, MV production is controlled by themachinery that regulates iron homeostasis in Mtb. Specifically, we will test whether the master transcriptionalregulator of iron uptake, iron transporters, and siderophores are required for normal MV biogenesis during ironlimitation. The results of these studies will help elucidate a still poorly understood mechanism used by Mtb tointeract with the host and identify new points of intervention for development of new therapeutic or preventivetherapies.
Effective start/end date1/11/1712/31/18


  • National Institutes of Health (NIH)


Mycobacterium tuberculosis
Anti-Bacterial Agents
Host-Pathogen Interactions
Attenuated Vaccines
Virulence Factors