0-bit consistent weighted sampling

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

We1 develop 0-bit consistent weighted sampling (CWS) for efficiently estimating min-max kernel, which is a generalization of the resemblance kernel originally designed for binary data. Because the estimator of 0-bit CWS constitutes a positive definite kernel, this method can be naturally applied to large-scale data mining problems. Basically, if we feed the sampled data from 0-bit CWS to a highly efficient linear classifier (e.g., linear SVM), we effectively (and approximately) train a nonlinear classifier based on the min-max kernel. The accuracy improves as we increase the sample size. In this paper, we first demonstrate, through an extensive classification study using kernel machines, that the min-max kernel often provides an effective measure of similarity for nonnegative data. This helps justify the use of min-max kernel. However, as the min-max kernel is nonlinear and might be difficult to be used for industrial applications with massive data, we propose to linearize the min-max kernel via 0-bit CWS, a simplification of the original CWS method. The previous remarkable work on consistent weighted sampling (CWS) produces samples in the form of (i,t) where the i records the location (and in fact also the weights) information analogous to the samples produced by classical minwise hashing on binary data. Because the t is theoretically unbounded, it was not immediately clear how to effectively implement CWS for building large-scale linear classifiers. We provide a simple solution by discarding t (which we refer to as the "0-bit" scheme). Via an extensive empirical study, we show that this 0-bit scheme does not lose essential information. We then apply 0-bit CWS for building linear classifiers to approximate min-max kernel classifiers, as extensively validated on a wide range of public datasets. We expect this work will generate interests among data mining practitioners who would like to efficiently utilize the nonlinear information of non-binary and nonnegative data.

Original languageEnglish (US)
Title of host publicationKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages665-674
Number of pages10
ISBN (Electronic)9781450336642
DOIs
StatePublished - Aug 10 2015
Externally publishedYes
Event21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, Australia
Duration: Aug 10 2015Aug 13 2015

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume2015-August

Other

Other21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
CountryAustralia
CitySydney
Period8/10/158/13/15

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint Dive into the research topics of '0-bit consistent weighted sampling'. Together they form a unique fingerprint.

  • Cite this

    Li, P. (2015). 0-bit consistent weighted sampling. In KDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 665-674). (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Vol. 2015-August). Association for Computing Machinery. https://doi.org/10.1145/2783258.2783406