## Abstract

Points P_{1} , . . . , P_{n} in the unit square define a convex n-chain if they are below y = x and, together with P_{0} = (0, 0) and P_{n+1} = (1, 1), they are in convex position. Under uniform probability, we prove an almost sure limit theorem for these chains that uses only probabilistic arguments, and which strengthens similar limit shape statements established by other authors. An interesting feature is that the limit shape is a direct consequence of the method. The main result is an accompanying central limit theorem for these chains. A weak convergence result implies several other statements concerning the deviations between random convex chains and their limit.

Original language | English (US) |
---|---|

Pages (from-to) | 35-50 |

Number of pages | 16 |

Journal | Discrete and Computational Geometry |

Volume | 23 |

Issue number | 1 |

DOIs | |

State | Published - Jan 2000 |

## All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics