A control-based approach to indentation quantification in broadband and in-liquid nanomechanical measurement using atomic force microscope

Juan Ren, Qingze Zou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This paper presents a new control-based approach to achieve accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is fundamental to probe-based material property characterization as the force applied and the indentation generated are the fundamental physical variables that must be measured accurately. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid environment. Such significant measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample, and the distributive hydrodynamic force effects as well as thermal drifts when measuring indentation in liquid. We propose a control-based approach to address these challenges and overcome the limits of the conventional method. The proposed approach is demonstrated through experiments of measuring the indentation measurements on a polydimethylsiloxane (PDMS) sample over a broadband of frequencies in air and with high-speed force load rate in liquid.

Original languageEnglish (US)
Title of host publication2012 American Control Conference, ACC 2012
Pages3234-3239
Number of pages6
StatePublished - 2012
Event2012 American Control Conference, ACC 2012 - Montreal, QC, Canada
Duration: Jun 27 2012Jun 29 2012

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Other

Other2012 American Control Conference, ACC 2012
Country/TerritoryCanada
CityMontreal, QC
Period6/27/126/29/12

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A control-based approach to indentation quantification in broadband and in-liquid nanomechanical measurement using atomic force microscope'. Together they form a unique fingerprint.

Cite this