## Abstract

Many dynamic graph algorithms have an amortized update time, rather than a stronger worst-case guarantee. But amortized data structures are not suitable for real-time systems, where each individual operation has to be executed quickly. For this reason, there exist many recent randomized results that aim to provide a guarantee stronger than amortized expected. The strongest possible guarantee for a randomized algorithm is that it is always correct (Las Vegas) and has high-probability worst-case update time, which gives a bound on the time for each individual operation that holds with high probability.In this article, we present the first polylogarithmic high-probability worst-case time bounds for the dynamic spanner and the dynamic maximal matching problem.(1)For dynamic spanner, the only known o(n) worst-case bounds were O(n3/4) high-probability worst-case update time for maintaining a 3-spanner and O(n5/9) for maintaining a 5-spanner. We give a O(1)k log3 (n) high-probability worst-case time bound for maintaining a (2k-1)-spanner, which yields the first worst-case polylog update time for all constant k. (All the results above maintain the optimal tradeoff of stretch 2k-1 and Õ(n1+1/k) edges.)(2)For dynamic maximal matching, or dynamic 2-approximate maximum matching, no algorithm with o(n) worst-case time bound was known and we present an algorithm with O(log 5 (n)) high-probability worst-case time; similar worst-case bounds existed only for maintaining a matching that was (2+ μ)-approximate, and hence not maximal.Our results are achieved using a new approach for converting amortized guarantees to worst-case ones for randomized data structures by going through a third type of guarantee, which is a middle ground between the two above: An algorithm is said to have worst-case expected update time I' if for every update σ, the expected time to process σ is at most I'. Although stronger than amortized expected, the worst-case expected guarantee does not resolve the fundamental problem of amortization: A worst-case expected update time of O(1) still allows for the possibility that every 1/f(n) updates requires ϴ (f(n)) time to process, for arbitrarily high f(n). In this article, we present a black-box reduction that converts any data structure with worst-case expected update time into one with a high-probability worst-case update time: The query time remains the same, while the update time increases by a factor of O(log 2(n)).Thus, we achieve our results in two steps: (1) First, we show how to convert existing dynamic graph algorithms with amortized expected polylogarithmic running times into algorithms with worst-case expected polylogarithmic running times. (2) Then, we use our black-box reduction to achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are Las-Vegas-type algorithms.

Original language | English (US) |
---|---|

Article number | 29 |

Journal | ACM Transactions on Algorithms |

Volume | 17 |

Issue number | 4 |

DOIs | |

State | Published - Oct 2021 |

Externally published | Yes |

## All Science Journal Classification (ASJC) codes

- Mathematics (miscellaneous)

## Keywords

- Spanners
- maximal matching