A Deep Learning Framework Based on Dynamic Channel Selection for Early Classification of Left and Right Hand Motor Imagery Tasks

Jiazhen Hong, Foroogh Shamsi, Laleh Najafizadeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ideal brain-computer interfaces (BCIs) need to be efficient and accurate, demanding for classifiers that can work across subjects while providing high classification accu-racy results from recordings with short duration. To address this problem, we present a new deep learning framework for discriminating motor imagery (MI) tasks from electroen-cephalography (EEG) signals. The framework consists of a 1D convolutional neural network-long short-term memory (CNN-LSTM), combined with a dynamic channel selection approach based on Davies-Bouldin index (DBI). Using data from BCI competition IV-IIa data, the proposed framework reports an average classification accuracy of 70.17% and 76.18% when using only 800 ms and 1500 ms of the EEG data after the task onset, respectively. The proposed framework dynamically balances individual differences, achieves comparable or better performance compared to existing work, while using short duration of EEG.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3550-3553
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A Deep Learning Framework Based on Dynamic Channel Selection for Early Classification of Left and Right Hand Motor Imagery Tasks'. Together they form a unique fingerprint.

Cite this