A finite-impulse-response-based approach to control acoustic-caused probe-vibration in atomic force microscope imaging

Sicheng Yi, Qingze Zou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this paper, we propose a finite-impulse-response (FIR)- based feedforward control approach to mitigate the acousticcaused probe vibration during atomic force microscope (AFM) imaging. Compensation for the extraneous probe vibration is needed to avoid the adverse effects of environmental disturbances such as acoustic noise on AFM imaging, nanomechanical characterization, and nanomanipulation. Particularly, residual noise still exists even though conventional passive noise cancellation apparatus has been employed. The proposed technique exploits a data-driven approach to capture both the noise propagation dynamics and the noise cancellation dynamics in the controller design, and is illustrated through the experimental implementation in AFM imaging application.

Original languageEnglish (US)
Title of host publicationMechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791858288
DOIs
StatePublished - 2017
EventASME 2017 Dynamic Systems and Control Conference, DSCC 2017 - Tysons, United States
Duration: Oct 11 2017Oct 13 2017

Publication series

NameASME 2017 Dynamic Systems and Control Conference, DSCC 2017
Volume2

Other

OtherASME 2017 Dynamic Systems and Control Conference, DSCC 2017
CountryUnited States
CityTysons
Period10/11/1710/13/17

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'A finite-impulse-response-based approach to control acoustic-caused probe-vibration in atomic force microscope imaging'. Together they form a unique fingerprint.

Cite this