TY - JOUR
T1 - A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction
AU - Osterman, Gordon
AU - Keating, Kristina
AU - Binley, Andrew
AU - Slater, Lee
N1 - Publisher Copyright:
© 2016. American Geophysical Union. All Rights Reserved.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - We estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations, we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time R2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE=0.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE=0.13) compare favorably to estimates from the Katz and Thompson model (NRMSE=0.074). This model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.
AB - We estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations, we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time R2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE=0.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE=0.13) compare favorably to estimates from the Katz and Thompson model (NRMSE=0.074). This model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.
KW - complex conductivity
KW - induced polarization
KW - nuclear magnetic resonance
KW - permeability
UR - http://www.scopus.com/inward/record.url?scp=84973115914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973115914&partnerID=8YFLogxK
U2 - 10.1002/2015WR018472
DO - 10.1002/2015WR018472
M3 - Article
AN - SCOPUS:84973115914
SN - 0043-1397
VL - 52
SP - 4321
EP - 4337
JO - Water Resources Research
JF - Water Resources Research
IS - 6
ER -