TY - JOUR
T1 - A more unified picture for the thermodynamics of nucleic acid duplex melting
T2 - A characterization by calorimetric and volumetric techniques
AU - Chalikian, Tigran V.
AU - Völker, Jens
AU - Plum, G. Eric
AU - Breslauer, Kenneth J.
PY - 1999/7/6
Y1 - 1999/7/6
N2 - We use a combination of calorimetric and volumetric techniques to detect and to characterize the thermodynamic changes that accompany helix-to-coil transitions for five polymeric nucleic acid duplexes. Our calorimetric measurements reveal that melting of the duplexes is accompanied by positive changes in heat capacity (ΔCρ) of similar magnitude, with an average ACρ value of 64.6 ± 21.4 cal deg-1 mol-1. When this heat capacity value is used to compare significantly different transition enthalpies (ΔH°) at a common reference temperature, T(ref), we find ΔH(T(ref)) for duplex melting to be far less dependent on duplex type, base composition, or base sequence than previously believed on the basis of the conventional assumption of a near-zero value for ΔC(P). Similarly, our densimetric and acoustic measurements reveal that, at a given temperature, all the AT- and AU- containing duplexes studied here melt with nearly the same volume and compressibility changes. In the aggregate, our results, in conjunction with literature data, suggest a more unified picture for the thermodynamics of nucleic acid duplex melting. Specifically, when compared at a common temperature, the apparent large differences present in the literature for the transition enthalpies of different duplexes become much more compressed, and the melting of all-AT- and all-AU-containing duplexes exhibits similar volume and compressibility changes despite differences in sequence and conformation. Thus, insofar as thermodynamic properties are concerned, when comparing duplexes, the temperature under consideration is as important as, if not more important than, the duplex type, the base composition, or the base sequence. This general behavior has significant implications for our basic understanding of the forces that stabilize nucleic acid duplexes. This behavior also is of practical significance in connection with the use of thermodynamic databases for designing probes and for assessing the affinity and specificity associated with hybridization-based protocols used in a wide range of sequencing, diagnostic, and therapeutic applications.
AB - We use a combination of calorimetric and volumetric techniques to detect and to characterize the thermodynamic changes that accompany helix-to-coil transitions for five polymeric nucleic acid duplexes. Our calorimetric measurements reveal that melting of the duplexes is accompanied by positive changes in heat capacity (ΔCρ) of similar magnitude, with an average ACρ value of 64.6 ± 21.4 cal deg-1 mol-1. When this heat capacity value is used to compare significantly different transition enthalpies (ΔH°) at a common reference temperature, T(ref), we find ΔH(T(ref)) for duplex melting to be far less dependent on duplex type, base composition, or base sequence than previously believed on the basis of the conventional assumption of a near-zero value for ΔC(P). Similarly, our densimetric and acoustic measurements reveal that, at a given temperature, all the AT- and AU- containing duplexes studied here melt with nearly the same volume and compressibility changes. In the aggregate, our results, in conjunction with literature data, suggest a more unified picture for the thermodynamics of nucleic acid duplex melting. Specifically, when compared at a common temperature, the apparent large differences present in the literature for the transition enthalpies of different duplexes become much more compressed, and the melting of all-AT- and all-AU-containing duplexes exhibits similar volume and compressibility changes despite differences in sequence and conformation. Thus, insofar as thermodynamic properties are concerned, when comparing duplexes, the temperature under consideration is as important as, if not more important than, the duplex type, the base composition, or the base sequence. This general behavior has significant implications for our basic understanding of the forces that stabilize nucleic acid duplexes. This behavior also is of practical significance in connection with the use of thermodynamic databases for designing probes and for assessing the affinity and specificity associated with hybridization-based protocols used in a wide range of sequencing, diagnostic, and therapeutic applications.
UR - http://www.scopus.com/inward/record.url?scp=0033529318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033529318&partnerID=8YFLogxK
U2 - 10.1073/pnas.96.14.7853
DO - 10.1073/pnas.96.14.7853
M3 - Article
C2 - 10393911
AN - SCOPUS:0033529318
SN - 0027-8424
VL - 96
SP - 7853
EP - 7858
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 14
ER -