A numerical study of salt fluxes in delaware bay estuary

María Aristizábal, Robert Chant

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The results of a numerical study of Delaware Bay using the Regional Ocean Modeling System (ROMS) are presented. The simulations are run over a range of steady river inputs and used M2 and S2 tidal components to capture the spring-neap variability. Results provide a description of the spatial and temporal structure of the estuarine exchange flow and the salinity field, as well the along-channel salt flux in the estuary. The alongchannel salt flux is decomposed into an advective term associated with the river flow, a steady shear dispersion Fe associated with the estuarine exchange flow, and a tidal oscillatory salt flux Ft. Time series of Fe and Ft show that both are larger during neap tide than during spring. This time variability of Ft, which is contrary to existing scalings, is caused by the lateral flows that bring velocity and salinity out of quadrature and the stronger stratification during neap tide, which causes Ft to be enhanced relative to spring tide.Afit for the salt intrusion lengthLwith river dischargeQfor a number of isohalines is performed. The functional dependences of L with Q are significantly weaker than Q-1/3 scaling. It is concluded that the response of the salt field with river discharge is due to the dependence of Fe and Ft withQ and the relative importance of Ft to the total upstream salt flux: as river discharge increases, Fe becomes the dominant mechanism. Once Fe dominates, the salt field stifFens because of a reduction of the vertical eddy viscosity with increasing Q.

Original languageEnglish (US)
Pages (from-to)1572-1588
Number of pages17
JournalJournal of Physical Oceanography
Volume43
Issue number8
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Oceanography

Fingerprint Dive into the research topics of 'A numerical study of salt fluxes in delaware bay estuary'. Together they form a unique fingerprint.

Cite this