A particle-substrate numerical model for a quasi-2D driven dissipative granular gas

Meenakshi Dutt, R. P. Behringer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A complete understanding of the microscopic dynamics of a monolayer of identical spheres moving on a substrate must encompass the effects of collisions and the substrate on the particles. We begin from first principles by considering collections of spherical frictional particles that roll and slip on a flat horizontally vibrated substrate. We present a numerical model which accounts for the substrate motion, collisional and surface frictional dissipation and their influence on particle dynamics for a quasi 2-dimensional dilute granular gas. In such systems, the ratio of the substrate acceleration to the particlesubstrate static frictional force (Kondic, Phys Rev. E (1999)) dominates the individual particle dynamics and the collision dynamics. This model is an extension of a previous numerical model which accounted for the influence of the collisional and substrate dissipation on a quasi two-dimensional cooling granular gas (Dutt Behringer, Phys. Rev. E (2004)). We willpresent results from our numerical experiments which highlight the progression of dynamical variables and fluctuation velocity distributions as a function of the initial conditions and the driving acceleration.

Original languageEnglish (US)
Title of host publicationPowders and Grains 2009 - Proceedings of the 6th International Conference on Micromechanics of Granular Media
Pages1112-1115
Number of pages4
DOIs
StatePublished - 2009
Externally publishedYes
Event6th International Conference on Micromechanics of Granular Media, Powders and Grains 2009 - Golden, CO, United States
Duration: Jul 13 2009Jul 17 2009

Publication series

NameAIP Conference Proceedings
Volume1145
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other6th International Conference on Micromechanics of Granular Media, Powders and Grains 2009
Country/TerritoryUnited States
CityGolden, CO
Period7/13/097/17/09

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • Physics and Astronomy(all)
  • Nature and Landscape Conservation

Keywords

  • Granular gases
  • Granular materials
  • Substrate friction

Fingerprint

Dive into the research topics of 'A particle-substrate numerical model for a quasi-2D driven dissipative granular gas'. Together they form a unique fingerprint.

Cite this