A self-supervised learning system for object detection using physics simulation and multi-view pose estimation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

65 Scopus citations

Abstract

Progress has been achieved recently in object detection given advancements in deep learning. Nevertheless, such tools typically require a large amount of training data and significant manual effort to label objects. This limits their applicability in robotics, where solutions must scale to a large number of objects and variety of conditions. This work proposes an autonomous process for training a Convolutional Neural Network (CNN) for object detection and pose estimation in robotic setups. The focus is on detecting objects placed in cluttered, tight environments, such as a shelf with multiple objects. In particular, given access to 3D object models, several aspects of the environment are physically simulated. The models are placed in physically realistic poses with respect to their environment to generate a labeled synthetic dataset. To further improve object detection, the network self-trains over real images that are labeled using a robust multi-view pose estimation process. The proposed training process is evaluated on several existing datasets and on a dataset collected for this paper with a Motoman robotic arm. Results show that the proposed approach outperforms popular training processes relying on synthetic - but not physically realistic - data and manual annotation. The key contributions are the incorporation of physical reasoning in the synthetic data generation process and the automation of the annotation process over real images.

Original languageEnglish (US)
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages545-551
Number of pages7
ISBN (Electronic)9781538626825
DOIs
StatePublished - Dec 13 2017
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: Sep 24 2017Sep 28 2017

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period9/24/179/28/17

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A self-supervised learning system for object detection using physics simulation and multi-view pose estimation'. Together they form a unique fingerprint.

Cite this