A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei

Rachel Somerville, Philip F. Hopkins, Thomas J. Cox, Brant E. Robertson, Lars Hernquist

Research output: Contribution to journalArticle

659 Citations (Scopus)

Abstract

ABSTRACT We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the 'concordance' ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z ≳ 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ∼ 3-4).

Original languageEnglish (US)
Pages (from-to)481-506
Number of pages26
JournalMonthly Notices of the Royal Astronomical Society
Volume391
Issue number2
DOIs
StatePublished - Dec 1 2008

Fingerprint

coevolution
active galactic nuclei
cold gas
galaxies
stellar mass
star formation
gas
histories
dark matter
assembly
history
high temperature gases
cosmology
star formation rate
prediction
predictions
cold
quasars
metallicity
cut-off

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Cosmology: theory
  • Galaxies: evolution
  • Galaxies: formation

Cite this

Somerville, Rachel ; Hopkins, Philip F. ; Cox, Thomas J. ; Robertson, Brant E. ; Hernquist, Lars. / A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. In: Monthly Notices of the Royal Astronomical Society. 2008 ; Vol. 391, No. 2. pp. 481-506.
@article{d7f225fff00741799c0669902c0e3dfe,
title = "A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei",
abstract = "ABSTRACT We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the 'concordance' ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z ≳ 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ∼ 3-4).",
keywords = "Cosmology: theory, Galaxies: evolution, Galaxies: formation",
author = "Rachel Somerville and Hopkins, {Philip F.} and Cox, {Thomas J.} and Robertson, {Brant E.} and Lars Hernquist",
year = "2008",
month = "12",
day = "1",
doi = "10.1111/j.1365-2966.2008.13805.x",
language = "English (US)",
volume = "391",
pages = "481--506",
journal = "Monthly Notices of the Royal Astronomical Society",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "2",

}

A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. / Somerville, Rachel; Hopkins, Philip F.; Cox, Thomas J.; Robertson, Brant E.; Hernquist, Lars.

In: Monthly Notices of the Royal Astronomical Society, Vol. 391, No. 2, 01.12.2008, p. 481-506.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei

AU - Somerville, Rachel

AU - Hopkins, Philip F.

AU - Cox, Thomas J.

AU - Robertson, Brant E.

AU - Hernquist, Lars

PY - 2008/12/1

Y1 - 2008/12/1

N2 - ABSTRACT We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the 'concordance' ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z ≳ 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ∼ 3-4).

AB - ABSTRACT We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (ΛCDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the 'concordance' ΛCDM cosmology overproduce star formation and stellar mass at high redshift (z ≳ 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ∼ 3-4).

KW - Cosmology: theory

KW - Galaxies: evolution

KW - Galaxies: formation

UR - http://www.scopus.com/inward/record.url?scp=57149132297&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57149132297&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2966.2008.13805.x

DO - 10.1111/j.1365-2966.2008.13805.x

M3 - Article

VL - 391

SP - 481

EP - 506

JO - Monthly Notices of the Royal Astronomical Society

JF - Monthly Notices of the Royal Astronomical Society

SN - 0035-8711

IS - 2

ER -