A Spiking Neural Network Emulating the Structure of the Oculomotor System Requires No Learning to Control a Biomimetic Robotic Head

Praveenram Balachandar, Konstantinos P. Michmizos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Robotic vision introduces requirements for real-time processing of fast-varying, noisy information in a continuously changing environment. In a real-world environment, convenient assumptions, such as static camera systems and deep learning algorithms devouring high volumes of ideally slightlyvarying data are hard to survive. Leveraging on recent studies on the neural connectome associated with eye movements, we designed a neuromorphic oculomotor controller and placed it at the heart of our in-house biomimetic robotic head prototype. The controller is unique in the sense that (1) all data are encoded and processed by a spiking neural network (SNN), and (2) by mimicking the associated brain areas' topology, the SNN is biologically interpretable and requires no training to operate. Here, we report the robot's target tracking ability, demonstrate that its eye kinematics are similar to those reported in human eye studies and show that a biologically-constrained learning, although not required for the SNN's function, can be used to further refine its performance. This work aligns with our ongoing effort to develop energy-efficient neuromorphic SNNs and harness their emerging intelligence to control biomimetic robots with versatility and robustness.

Original languageEnglish (US)
Title of host publication2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
PublisherIEEE Computer Society
Pages1128-1133
Number of pages6
ISBN (Electronic)9781728159072
DOIs
StatePublished - Nov 2020
Event8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020 - New York City, United States
Duration: Nov 29 2020Dec 1 2020

Publication series

NameProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
Volume2020-November
ISSN (Print)2155-1774

Conference

Conference8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
CountryUnited States
CityNew York City
Period11/29/2012/1/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Biomedical Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'A Spiking Neural Network Emulating the Structure of the Oculomotor System Requires No Learning to Control a Biomimetic Robotic Head'. Together they form a unique fingerprint.

Cite this