A tightly coupled region-shape framework for 3D medical image segmentation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Most hybrid 3D segmentation methods either heuristically couple the respective algorithm or combine a true 3D with a 2D algorithm due to computational considerations. In this paper we propose a new probabilistic framework for 3D image segmentation that combines tightly linked region- and shape-based constraints. Regionbased label constraints are modeled by a 3D Markov random field, and are tightly coupled to shape-based constraints of a 3D Deformable Model. The full 3D nature of the combined model leads to a robust smooth surface segmentation that outperforms the single constraint, slice-based as well as the loosely coupled 3D methods.

Original languageEnglish (US)
Title of host publication2006 3rd IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro - Proceedings
Pages426-429
Number of pages4
StatePublished - 2006
Event2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Arlington, VA, United States
Duration: Apr 6 2006Apr 9 2006

Publication series

Name2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
Volume2006

Other

Other2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Country/TerritoryUnited States
CityArlington, VA
Period4/6/064/9/06

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'A tightly coupled region-shape framework for 3D medical image segmentation'. Together they form a unique fingerprint.

Cite this