Abstract
Anthropogenic landscape change can disrupt gene flow. As part of the Missouri Ozark Forest Ecosystem Project, this study examined whether silvicultural practices influence pollen-mediated gene movement in the insect-pollinated species, Cornus florida L., by comparing pollen pool structure (Φst) among clear-cutting, selective cutting, and uncut regimes with the expectation that pollen movement should be least in the uncut regime. Using a sample of 1500 seedlings - 10 each from 150 seed parents (43 in clear-cut, 74 in selective, and 33 in control sites) from six sites (each ranging from 266 to 527 ha), eight allozyme loci were analyzed with a pollen pool structure approach known as TWOGENER (Smouse et al., 2001; Evolution 55: 260-271). This analysis revealed that pollen pool structure was less in clear-cut (ΦC = 0.090, P < 0.001) than in uncut areas (ΦU = 0.174, P < 0.001), with selective-cut intermediate (ΦS = 0.125, P < 0.001). These estimates translate into more effective pollen donors (Ncp) in clear-cut (Ncp = 5.56) and selective-cut (Ncp = 4.00) areas than in uncut areas (N cp = 2.87). We demonstrate that ΦC ≤ ΦS ≤ ΦU, with ΦC significantly smaller than ΦU (P < 0.034). The findings imply that, as long as a sufficiently large number of seed parents remain to provide adequate reproduction and to avoid a genetic bottleneck in the effective number of mothers, silvicultural management may not negatively affect the effective number of pollen parents, and hence subsequent genetic diversity in Cornus florida.
Original language | English (US) |
---|---|
Pages (from-to) | 262-271 |
Number of pages | 10 |
Journal | American Journal of Botany |
Volume | 92 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2005 |
All Science Journal Classification (ASJC) codes
- Ecology, Evolution, Behavior and Systematics
- Genetics
- Plant Science
Keywords
- California
- Cornaceae
- Gene flow
- Genetic structure
- Landscape change
- Pollen movement
- Silvicultural treatment
- TWOGENER