A Unified Framework for Painting Classification

Babak Saleh, Ahmed Elgammal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

In the past few years, the number of fine-art collections that are digitized and publicly available has been growing rapidly. With the availability of such large collections of digitized artworks comes the need to develop multimedia systems to archive and retrieve this pool of data. Measuring the visual similarity between artistic items is an essential step for such multimedia systems, which can benefit more high-level multimedia tasks. In order to model this similarity between paintings, we should extract the appropriate visual features for paintings and find out the best approach to learn the similarity metric based on these features. We investigate a comprehensive list of visual features and metric learning approaches to learn an optimized similarity measure between paintings. We develop a machine that is able to make aesthetic-related semantic-level judgments, such as predicting a painting's style, genre, and artist, as well as providing similarity measures optimized based on the knowledge available in the domain of art historical interpretation. Our experiments show the value of using this similarity measure for the aforementioned prediction tasks.

Original languageEnglish (US)
Title of host publicationProceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
EditorsXindong Wu, Alexander Tuzhilin, Hui Xiong, Jennifer G. Dy, Charu Aggarwal, Zhi-Hua Zhou, Peng Cui
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1254-1261
Number of pages8
ISBN (Electronic)9781467384926
DOIs
StatePublished - Jan 29 2016
Event15th IEEE International Conference on Data Mining Workshop, ICDMW 2015 - Atlantic City, United States
Duration: Nov 14 2015Nov 17 2015

Publication series

NameProceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015

Other

Other15th IEEE International Conference on Data Mining Workshop, ICDMW 2015
Country/TerritoryUnited States
CityAtlantic City
Period11/14/1511/17/15

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Science Applications

Keywords

  • Art
  • Art history
  • Classification
  • Computer vision
  • Machine learning
  • Metric Learning

Fingerprint

Dive into the research topics of 'A Unified Framework for Painting Classification'. Together they form a unique fingerprint.

Cite this