A Whittaker-Plancherel inversion formula for SL (2, R)

Ehud Moshe Baruch, Zhengyu Mao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We prove a Whittaker-Plancherel inversion formula which gives a Whittaker coefficient of a function on SL (2, R) in terms of certain Bessel coefficients of this function. The Bessel coefficients come from Bessel functions attached to irreducible unitary tempered representations. The Kuznecov transform and Kuznecov inversion formula play a central role in the proof of this Whittaker-Plancherel inversion formula.

Original languageEnglish (US)
Pages (from-to)221-244
Number of pages24
JournalJournal of Functional Analysis
Volume238
Issue number1
DOIs
StatePublished - Sep 1 2006

All Science Journal Classification (ASJC) codes

  • Analysis

Keywords

  • Bessel distributions
  • Bessel functions
  • Kuznecov transform
  • Orbital integrals
  • Whittaker-Plancherel

Fingerprint

Dive into the research topics of 'A Whittaker-Plancherel inversion formula for SL (2, R)'. Together they form a unique fingerprint.

Cite this