Abstract
We compare the accuracy of the ghost rotationally invariant slave-boson (g-RISB) theory and dynamical mean field theory (DMFT) on the single-band Hubbard model, as a function of the number of bath sites in the embedding impurity Hamiltonian. Our benchmark calculations confirm that the accuracy of g-RISB can be systematically improved by increasing the number of bath sites, similar to DMFT. With a few bath sites, we observe that g-RISB is systematically more accurate than DMFT for the ground-state observables. On the other hand, the relative accuracy of these methods is generally comparable for the quasiparticle weight and the spectral function. As expected, we observe that g-RISB satisfies the variational principle in infinite dimensions, as the total energy decreases monotonically towards the exact value as a function of the number of bath sites, suggesting that the g-RISB wave function may approach the exact ground state in infinite dimensions. Our results suggest that the g-RISB is a promising method for first-principles simulations of strongly correlated matter, which can capture the behavior of both static and dynamical observables, at a relatively low computational cost.
Original language | English (US) |
---|---|
Article number | L121104 |
Journal | Physical Review B |
Volume | 107 |
Issue number | 12 |
DOIs | |
State | Published - Mar 15 2023 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics