ACTIVETHIEF: Model extraction using active learning and unannotated public data

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, Vinod Ganapathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

39 Scopus citations

Abstract

Machine learning models are increasingly being deployed in practice. Machine Learning as a Service (MLaaS) providers expose such models to queries by third-party developers through application programming interfaces (APIs). Prior work has developed model extraction attacks, in which an attacker extracts an approximation of an MLaaS model by making black-box queries to it. We design ACTIVETHIEF – a model extraction framework for deep neural networks that makes use of active learning techniques and unannotated public datasets to perform model extraction. It does not expect strong domain knowledge or access to annotated data on the part of the attacker. We demonstrate that (1) it is possible to use ACTIVETHIEF to extract deep classifiers trained on a variety of datasets from image and text domains, while querying the model with as few as 10-30% of samples from public datasets, (2) the resulting model exhibits a higher transferability success rate of adversarial examples than prior work, and (3) the attack evades detection by the state-of-the-art model extraction detection method, PRADA.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages865-872
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Externally publishedYes
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'ACTIVETHIEF: Model extraction using active learning and unannotated public data'. Together they form a unique fingerprint.

Cite this