Adaptive deep models for incremental learning: Considering capacity scalability and sustainability

Yang Yang, Da Wei Zhou, De Chuan Zhan, Hui Xiong, Yuan Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

29 Scopus citations

Abstract

Recent years have witnessed growing interests in developing deep models for incremental learning. However, existing approaches often utilize the fixed structure and online backpropagation for deep model optimization, which is difficult to be implemented for incremental data scenarios. Indeed, for streaming data, there are two main challenges for building deep incremental models. First, there is a requirement to develop deep incremental models with Capacity Scalability. In other words, the entire training data are not available before learning the task. It is a challenge to make the deep model structure scaling with streaming data for flexible model evolution and faster convergence. Second, since the stream data distribution usually changes in nature (concept drift), there is a constraint for Capacity Sustainability. That is, how to update the model while preserving previous knowledge for overcoming the catastrophic forgetting. To this end, in this paper, we develop an incremental adaptive deep model (IADM) for dealing with the above two capacity challenges in real-world incremental data scenarios. Specifically, IADM provides an extra attention model for the hidden layers, which aims to learn deep models with adaptive depth from streaming data and enables capacity scalability. Also, we address capacity sustainability by exploiting the attention based fisher information matrix, which can prevent the forgetting in consequence. Finally, we conduct extensive experiments on real-world data and show that IADM outperforms the state-of-the-art methods with a substantial margin. Moreover, we show that IADM has better capacity scalability and sustainability in incremental learning scenarios.

Original languageEnglish (US)
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages74-82
Number of pages9
ISBN (Electronic)9781450362016
DOIs
StatePublished - Jul 25 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: Aug 4 2019Aug 8 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period8/4/198/8/19

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Capacity Scalability
  • Capacity Sustainability
  • Deep Incremental Learning

Fingerprint

Dive into the research topics of 'Adaptive deep models for incremental learning: Considering capacity scalability and sustainability'. Together they form a unique fingerprint.

Cite this