Adaptive QoS Control by Toggling Voice Traffic between Circuit and Packet Cellular Networks

Jae Won Kang, Badri Nath

Research output: Contribution to conferencePaperpeer-review

Abstract

As cellular packet data services become widely deployed by the rollout of the networks such as General Packet Radio Service (GPRS) and 3G cellular networks, packet-switched voice service such as voice over IP (VoIP) can soon be expected to be offered as an alternative to circuit-switched voice service. While circuit-switched voice offers better quality, packet-switched voice offers better resource utilization due to its multiplexing and compression techniques that can be used in packet radio principle. Therefore, the capability of having voice service over either circuit-switched network or packet-switched network provides a tradeoff between voice quality and bandwidth utilization. This paper proposes three schemes that allow users to toggle between circuit-switched voice and packet-switched voice based on the desired tradeoff. The basic idea is to allow ongoing voice traffic to alternate between circuit-switched network and packet-switched network using a 3-way calling mechanism in the SIP-enabled GSM/GPRS cellular network. We also show how these toggle schemes can be used depending on the cell load. Detailed performances of the proposed schemes are evaluated using simulation with realistic parameters of a cellular environment. The result shows our schemes can alleviate cell overloading as well as provide the smooth transition of an ongoing call between circuit-switched network and packet-switched network. Our schemes can be easily deployed in any cellular mobile network where circuit-switched network and packet-switched network coexist.

Original languageEnglish (US)
Pages3498-3503
Number of pages6
StatePublished - 2003
EventIEEE Global Telecommunications Conference GLOBECOM'03 - San Francisco, CA, United States
Duration: Dec 1 2003Dec 5 2003

Other

OtherIEEE Global Telecommunications Conference GLOBECOM'03
Country/TerritoryUnited States
CitySan Francisco, CA
Period12/1/0312/5/03

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Global and Planetary Change

Fingerprint

Dive into the research topics of 'Adaptive QoS Control by Toggling Voice Traffic between Circuit and Packet Cellular Networks'. Together they form a unique fingerprint.

Cite this