TY - JOUR
T1 - Advanced computational modeling for in vitro nanomaterial dosimetry
AU - DeLoid, Glen M.
AU - Cohen, Joel M.
AU - Pyrgiotakis, Georgios
AU - Pirela, Sandra V.
AU - Pal, Anoop
AU - Liu, Jiying
AU - Srebric, Jelena
AU - Demokritou, Philip
N1 - Funding Information:
The authors thank Georgios Sotiriou (Particle Technology Laboratory, ETH Zurich) for the electron microscopy imaging, BET and XRD analysis of the ENM samples, and J. Teeguarden (Pacific Northwest National Laboratory, Richland, WA, US) for providing the MATLAB software implementation of the ISDD dose delivery model used in this work. This research project was supported by NIEHS grant (ES-0000002), NSF grant (ID 1235806) and the Center for Nanotechnology and Nanotoxicology at The Harvard School of Public Health. This work was performed in part at the Harvard Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765.
Publisher Copyright:
© 2015 DeLoid et al.
PY - 2015/10/24
Y1 - 2015/10/24
N2 - Background: Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells "see," during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Methods: Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, K D, and allows modeling of ENM dissolution over time. Results: Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for K D values consistent with non-specific binding (> 1 nM), whereas smaller values (≥ 1 nM) typical of specific high-affinity binding resulted in faster and eventual complete deposition of material. Conclusions: The advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures.
AB - Background: Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells "see," during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Methods: Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, K D, and allows modeling of ENM dissolution over time. Results: Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for K D values consistent with non-specific binding (> 1 nM), whereas smaller values (≥ 1 nM) typical of specific high-affinity binding resulted in faster and eventual complete deposition of material. Conclusions: The advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures.
KW - Engineered nanomaterial
KW - Fate and transport modeling
KW - Hazard ranking
KW - Nanosafety
KW - Nanotoxicology
KW - in vitro dosimetry
UR - http://www.scopus.com/inward/record.url?scp=84945125374&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945125374&partnerID=8YFLogxK
U2 - 10.1186/s12989-015-0109-1
DO - 10.1186/s12989-015-0109-1
M3 - Article
C2 - 26497802
AN - SCOPUS:84945125374
SN - 1743-8977
VL - 12
JO - Particle and Fibre Toxicology
JF - Particle and Fibre Toxicology
IS - 1
M1 - 32
ER -