TY - JOUR
T1 - Algebras of quasi-Plücker coordinates are Koszul
AU - Laugwitz, Robert
AU - Retakh, Vladimir
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2018/9
Y1 - 2018/9
N2 - Motivated by the theory of quasi-determinants, we study non-commutative algebras of quasi-Plücker coordinates. We prove that these algebras provide new examples of non-homogeneous quadratic Koszul algebras by showing that their quadratic duals have quadratic Gröbner bases.
AB - Motivated by the theory of quasi-determinants, we study non-commutative algebras of quasi-Plücker coordinates. We prove that these algebras provide new examples of non-homogeneous quadratic Koszul algebras by showing that their quadratic duals have quadratic Gröbner bases.
UR - http://www.scopus.com/inward/record.url?scp=85034580909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034580909&partnerID=8YFLogxK
U2 - 10.1016/j.jpaa.2017.11.001
DO - 10.1016/j.jpaa.2017.11.001
M3 - Article
AN - SCOPUS:85034580909
SN - 0022-4049
VL - 222
SP - 2810
EP - 2822
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
IS - 9
ER -