Alkane Dehydrogenation and H/D Exchange by a Cationic Pincer-Ir(III) Hydride: Cooperative C-H Addition and β-H Elimination Modes Induce Anomalous Selectivity

Ashish Parihar, Thomas J. Emge, Faraj Hasanayn, Alan S. Goldman

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We report that the cationic iridium complex (iPrPCP)IrH+ catalyzes the transfer-dehydrogenation of alkanes to give alkenes and hydrogen isotope exchange (HIE) of alkanes and arenes. Contrary to established selectivity trends found for C-H activation by transition metal complexes, strained cycloalkanes, including cyclopentane, cycloheptane, and cyclooctane, undergo C-H addition much more readily than n-alkanes, which in turn are much more reactive than cyclohexane. Aromatic C-H bonds also undergo H/D exchange much less rapidly than those of the strained cycloalkanes, but much more favorably than cyclohexane. The order of reactivity toward dehydrogenation correlates qualitatively with the reaction thermodynamics, but the magnitude is much greater than can be explained by thermodynamics. Accordingly, the cycloalkenes corresponding to the strained cycloalkanes undergo hydrogenation much more readily than cyclohexene, despite the less favorable thermodynamics of such hydrogenations. Computational (DFT) studies allow rationalization of the origin of reactivity and the unusual selectivity. Specifically, the initial C-H addition is strongly assisted by β-agostic interactions, which are particularly favorable for the strained cycloalkanes. Subsequent to α-C-H addition, the H atom of the β-agostic C-H bond is transferred directly to the hydride ligand of (iPrPCP)IrH+ to give a dihydrogen ligand. The overall processes, C-H addition and β-H-transfer to hydride, are calculated to generally have minima on the IRC surface although not necessarily on the enthalpy or free energy surfaces; these minima are extremely shallow such that the 1,2-dehydrogenations are effectively concerted although asynchronous.

Original languageEnglish (US)
Pages (from-to)10279-10297
Number of pages19
JournalJournal of the American Chemical Society
Volume147
Issue number12
DOIs
StatePublished - Mar 26 2025

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Alkane Dehydrogenation and H/D Exchange by a Cationic Pincer-Ir(III) Hydride: Cooperative C-H Addition and β-H Elimination Modes Induce Anomalous Selectivity'. Together they form a unique fingerprint.

Cite this