An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project

Ben Kravitz, Philip J. Rasch, Piers M. Forster, Timothy Andrews, Jason N.S. Cole, Peter J. Irvine, Duoying Ji, Jõn Egill Kristjánsson, John C. Moore, Helene Muri, Ulrike Niemeier, Alan Robock, Balwinder Singh, Simone Tilmes, Shingo Watanabe, Jin Ho Yoon

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


Analysis of surface and atmospheric energy budget responses to CO 2 and solar forcings can be used to reveal mechanisms of change in the hydrological cycle. We apply this energetic perspective to output from 11 fully coupled atmosphere-ocean general circulation models simulating experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), which achieves top-of-atmosphere energy balance between an abrupt quadrupling of CO2 from preindustrial levels (abrupt4xCO2) and uniform solar irradiance reduction. We divide the climate system response into a rapid adjustment, in which climate response is due to adjustment of the atmosphere and land surface on short time scales, and a feedback response, in which the climate response is predominantly due to feedback related to global mean temperature changes. Global mean temperature change is small in G1, so the feedback response is also small. G1 shows a smaller magnitude of land sensible heat flux rapid adjustment than in abrupt4xCO2 and a larger magnitude of latent heat flux adjustment, indicating a greater reduction of evaporation and less land temperature increase than abrupt4xCO2. The sum of surface flux changes in G1 is small, indicating little ocean heat uptake. Using an energetic perspective to assess precipitation changes, abrupt4xCO2 shows decreased mean evaporative moisture flux and increased moisture convergence, particularly over land. However, most changes in precipitation in G1 are in mean evaporative flux, suggesting that changes in mean circulation are small. Key Points Geoengineering feedback response is small Geoengineering can limit ocean heat uptake in a high CO2 climate Annual mean circulation changes under geoengineering may be small

Original languageEnglish (US)
Pages (from-to)13,087-13,102
JournalJournal of Geophysical Research Atmospheres
Issue number23
StatePublished - Dec 16 2013

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology


  • energetic perspective
  • geoengineering
  • hydrologic cycle
  • model intercomparison

Fingerprint Dive into the research topics of 'An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project'. Together they form a unique fingerprint.

Cite this