TY - JOUR
T1 - An updated version of wannier90
T2 - A tool for obtaining maximally-localised Wannier functions
AU - Mostofi, Arash A.
AU - Yates, Jonathan R.
AU - Pizzi, Giovanni
AU - Lee, Young Su
AU - Souza, Ivo
AU - Vanderbilt, David
AU - Marzari, Nicola
N1 - Publisher Copyright:
© 2014 Elsevier B.V.
PY - 2014/8/1
Y1 - 2014/8/1
N2 - wannier90 is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWFs can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90 is able to output MLWFs for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. We present here an updated version of wannier90, wannier90 2.0, including minor bug fixes and parallel (MPI) execution for band-structure interpolation and the calculation of properties such as density of states, Berry curvature and orbital magnetisation. wannier90 is freely available under the GNU General Public License from http://www.wannier.org/. New version program summary Program title: wannier90 Catalogue identifier: AEAK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAK_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 930 386 No. of bytes in distributed program, including test data, etc.: 47 939 902 Distribution format: tar.gz Programming language: Fortran90, perl. Computer: Any architecture with a Fortran 90 compiler. Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX. Has the code been vectorised or parallelized?: Yes, parallelized using MPI. RAM: 10 Mb Classification: 7.3. External routines: • BLAS (http://www/netlib.org/blas)• LAPACK (http://www.netlib.org/lapack)•
AB - wannier90 is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWFs can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90 is able to output MLWFs for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. We present here an updated version of wannier90, wannier90 2.0, including minor bug fixes and parallel (MPI) execution for band-structure interpolation and the calculation of properties such as density of states, Berry curvature and orbital magnetisation. wannier90 is freely available under the GNU General Public License from http://www.wannier.org/. New version program summary Program title: wannier90 Catalogue identifier: AEAK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAK_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 930 386 No. of bytes in distributed program, including test data, etc.: 47 939 902 Distribution format: tar.gz Programming language: Fortran90, perl. Computer: Any architecture with a Fortran 90 compiler. Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX. Has the code been vectorised or parallelized?: Yes, parallelized using MPI. RAM: 10 Mb Classification: 7.3. External routines: • BLAS (http://www/netlib.org/blas)• LAPACK (http://www.netlib.org/lapack)•
KW - Density-functional theory
KW - Electronic structure
KW - Maximally-localised Wannier function
UR - http://www.scopus.com/inward/record.url?scp=84900684953&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84900684953&partnerID=8YFLogxK
U2 - 10.1016/j.cpc.2014.05.003
DO - 10.1016/j.cpc.2014.05.003
M3 - Article
AN - SCOPUS:84900684953
SN - 0010-4655
VL - 185
SP - 2309
EP - 2310
JO - Computer Physics Communications
JF - Computer Physics Communications
IS - 8
ER -