TY - JOUR
T1 - Anaerobic degradation of benzene in diverse anoxic environments
AU - Kazumi, J.
AU - Caldwell, M. E.
AU - Suflita, J. M.
AU - Lovley, D. R.
AU - Young, L. Y.
PY - 1997/3
Y1 - 1997/3
N2 - Benzene has often been observed to be resistant to microbial degradation under anoxic conditions. A number of recent studies, however, have demonstrated that anaerobic benzene utilization can occur. This study extends the previous reports of anaerobic benzene degradation to sediments that varied with respect to contamination input, predominant redox condition, and salinity. In spite of differences in methodology, microbial degradation of benzene was noted in slurries constructed with sediments from various geographical locations and range from aquifer sands to fine-grained estuarine muds, under methanogenic, sulfate-reducing, and iron-reducing conditions. In aquifer sediments under methanogenic conditions, benzene loss was concomitant with methane production, and microbial utilization of [14C]benzene yielded 14CO2 and 14CH4. In slurries with estuarine and aquifer sediments under sulfate-reducing conditions, the loss of sulfate in amounts consistent with the stoichiometric degradation of benzene or the conversion of [14C]benzene to 14CO2 indicates that benzene was mineralized. Benzene loss also occurred in the presence of Fe(III) in sediments from freshwater environments. Microbial benzene utilization, however, was not observed under denitrifying conditions. These results indicate that the potential for the anaerobic degradation of benzene, which was once thought to be resistant to non-oxygenase attack, exists in a variety of aquatic sediments from widely distributed locations.
AB - Benzene has often been observed to be resistant to microbial degradation under anoxic conditions. A number of recent studies, however, have demonstrated that anaerobic benzene utilization can occur. This study extends the previous reports of anaerobic benzene degradation to sediments that varied with respect to contamination input, predominant redox condition, and salinity. In spite of differences in methodology, microbial degradation of benzene was noted in slurries constructed with sediments from various geographical locations and range from aquifer sands to fine-grained estuarine muds, under methanogenic, sulfate-reducing, and iron-reducing conditions. In aquifer sediments under methanogenic conditions, benzene loss was concomitant with methane production, and microbial utilization of [14C]benzene yielded 14CO2 and 14CH4. In slurries with estuarine and aquifer sediments under sulfate-reducing conditions, the loss of sulfate in amounts consistent with the stoichiometric degradation of benzene or the conversion of [14C]benzene to 14CO2 indicates that benzene was mineralized. Benzene loss also occurred in the presence of Fe(III) in sediments from freshwater environments. Microbial benzene utilization, however, was not observed under denitrifying conditions. These results indicate that the potential for the anaerobic degradation of benzene, which was once thought to be resistant to non-oxygenase attack, exists in a variety of aquatic sediments from widely distributed locations.
UR - http://www.scopus.com/inward/record.url?scp=0031052334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031052334&partnerID=8YFLogxK
U2 - 10.1021/es960506a
DO - 10.1021/es960506a
M3 - Article
AN - SCOPUS:0031052334
SN - 0013-936X
VL - 31
SP - 813
EP - 818
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 3
ER -