Anomalous salt effects on a micellar‐mediated reaction of bromide ion

Clifford A. Bunton, Charles P. Cowell, Faruk Nome, Laurence Romsted

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

Reaction of bromide ion with α‐picryl‐p‐bromoacetophenone (1) is speeded by aqueous cationic micelles of cetyltrimethylammonium bromide (CTABr; C16H33NMe3Br) and dodecyltrimethylammonium bromide (DoTABr; C12H25NMe3Br) and rate constants reach limiting values when 1 is fully bound to micelles of CTABr. Limiting values are not reached in DoTABr, but the data can be fitted to a simple model for the distribution of reactants between water and micelles. Estimated second‐order rate constants at the micellar surface are similar to values in water, but this model cannot explain the observed rate enhancements on addition of NaBr to CTABr. Inert anions such as nitrate, mesylate, n‐butanesulfonate, phenylmethanesulfonate and camphor‐10‐sulfonate inhibit reaction in CTABr by competing with Br at the micellar surface. Other n‐alkanesulfonate ions (RSO 3−, R = n‐C5H11, n‐C6H13, n‐C7H15, n‐C8H17) and arenesulfonate ions (benzene‐, toluene‐, naphthalene‐1‐ and naphthalene‐2‐sulfonate) behave anomalously. These ions expel Br from the micelle, as shown electrochemically, but there are maxima in plots of rate constant against mole fraction of Br. These rate extrema are apparently due to perturbation of the micellar surface structure that overcomes the inhibition due to competition with Br. These results show that the simple pseudo‐phase, ion‐exchange model can be applied only in dilute electrolyte and in the absence of hydrophobic anions.

Original languageEnglish (US)
Pages (from-to)239-247
Number of pages9
JournalJournal of Physical Organic Chemistry
Volume3
Issue number4
DOIs
StatePublished - Jan 1 1990

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Anomalous salt effects on a micellar‐mediated reaction of bromide ion'. Together they form a unique fingerprint.

Cite this