Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae

Meiyan Wang, Dan Meng, Peng Zhang, Xiangxing Wang, Gang Du, Charles Brennan, Shiming Li, Chi Tang Ho, Hui Zhao

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


Aging and oxidative-related events are closely associated with the oxidative damages induced by excess reactive oxygen species (ROS). The phytochemicals nobiletin (NBT) and tangeretin (TAN) and their 5-demethylated derivatives 5-demethylnobiletin (5-DN) and 5-demethyltangeretin (5-DT) are the representative polymethoxyflavone (PMF) compounds found in aged citrus peels. Although the health benefits from PMFs due to their antioxidant activities have been well documented, a systematic assessment regarding the antioxidation process of PMFs is still lacking attention. Herein, we investigated the effects of the four PMFs subjected to oxidative stress including hydrogen peroxide, carbon tetrachloride, and cadmium sulfate using an emerging model organism Saccharomyces cerevisiae. As expected, all four of the PMFs exhibited improved cellular tolerance with decreasing lipid peroxidation and ROS. Furthermore, by using the mutant strains deficient in catalase, superoxide dismutase, or glutathione synthase, NBT, 5-DN, and TAN appear to contribute to the increased tolerance by activating cytosolic catalase under CCl4, while the antioxidant protection conferred by 5-DT against H2O2 and CdSO4 seems to require cytosolic catalase and glutathione, respectively. However, the involvement of Ctt1 and Sod1 is achieved neither by decreasing lipid peroxidation nor by scavenging intracellular ROS according to our results. In addition, a comparison of antioxidant capability of the four PMFs was conducted in this study. In general, this research tries to explore the antioxidant mechanism of PMFs in Saccharomyces cerevisiae, hoping to provide an example for developing more efficacious dietary antioxidants to battle against oxidative-or age-related illness.

Original languageEnglish (US)
Pages (from-to)3155-3160
Number of pages6
JournalJournal of agricultural and food chemistry
Issue number12
StatePublished - Mar 28 2018

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Agricultural and Biological Sciences(all)


  • PMF
  • ROS
  • Saccharomyces cerevisiae
  • antioxidant
  • lipid peroxidation


Dive into the research topics of 'Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this