Apprenticeship learning via soft local homomorphisms

Abdeslam Boularias, Brahim Chaib-draa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We consider the problem of apprenticeship learning when the expert's demonstration covers only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient solution to this problem based on the assumption that the expert is optimally acting in a Markov Decision Process (MDP). However, past work on IRL requires an accurate estimate of the frequency of encountering each feature of the states when the robot follows the expert's policy. Given that the complete policy of the expert is unknown, the features frequencies can only be empirically estimated from the demonstrated trajectories. In this paper, we propose to use a transfer method, known as soft homomorphism, in order to generalize the expert's policy to unvisited regions of the state space. The generalized policy can be used either as the robot's final policy, or to calculate the features frequencies within an IRL algorithm. Empirical results show that our approach is able to learn good policies from a small number of demonstrations.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages2971-2976
Number of pages6
DOIs
StatePublished - 2010
Externally publishedYes
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period5/3/105/7/10

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Apprenticeship learning via soft local homomorphisms'. Together they form a unique fingerprint.

Cite this