TY - JOUR
T1 - Arithmetic circuits with locally low algebraic rank
AU - Kumar, Mrinal
AU - Saraf, Shubhangi
N1 - Funding Information:
A conference version of this paper appeared in the Proceedings of the Conference on Computational Complexity, 2016 [27]. ∗Research supported in part by NSF grant CCF-1253886 and by a Simons Graduate Fellowship. †Research supported by NSF grant CCF-1350572.
Publisher Copyright:
© 2017 Mrinal Kumar and Shubhangi Saraf.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - In recent years, there has been a flurry of activity towards proving lower bounds for homogeneous depth-4 arithmetic circuits (Gupta et al., Fournier et al., Kayal et al., Kumar- Saraf), which has brought us very close to statements that are known to imply VP 6= VNP. It is open if these techniques can go beyond homogeneity, and in this paper we make progress in this direction by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits. A depth-4 circuit is a representation of an N-variate, degree-n polynomial P as(Formula presented.) where the Qij are given by their monomial expansion. Homogeneity adds the constraint that for every i ∈ [T], Σj deg(Qij) = n. We study an extension, where, for every i ∈ [T], the algebraic rank of the set fQi1;Qi2;Qitg of polynomials is at most some parameter k. We call this the class of Σ∏(k)Σ∏ circuits. Already for k = n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and hence k ≤ n). We study lower bounds and polynomial identity tests for such circuits and prove the following results. 1. Lower bounds. We give an explicit family of polynomials fPng of degree n in N = nO(1) variables in VNP, such that any Σ∏(n)Σ∏ circuit computing Pn has size at least exp(Ω(√nlogN)). This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits (Kayal et al. and Kumar-Saraf) as well as the Jacobian based lower bounds of Agrawal et al. which worked for Σ∏(k)Σ∏ circuits in the restricted setting where T ·k n. 2. Hitting sets. Let Σ∏(k)Σ∏[d] be the class of Σ∏(k)Σ∏ circuits with bottom fan-in at most d. We show that if d and k are at most Poly(logN), then there is an explicit hitting set for Σ∏(k)Σ∏[d] circuits of size quasipolynomially bounded in N and the size of the circuit. This strengthens a result of Forbes who constructed such quasipolynomial-size hitting sets in the setting where d and t are at most Poly(logN). A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), up to a translation, every polynomial in a set of polynomials can be written as a function of the polynomials in a transcendence basis of the set. We believe this may be of independent interest. We combine this with methods based on shifted partial derivatives to obtain our final results.
AB - In recent years, there has been a flurry of activity towards proving lower bounds for homogeneous depth-4 arithmetic circuits (Gupta et al., Fournier et al., Kayal et al., Kumar- Saraf), which has brought us very close to statements that are known to imply VP 6= VNP. It is open if these techniques can go beyond homogeneity, and in this paper we make progress in this direction by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits. A depth-4 circuit is a representation of an N-variate, degree-n polynomial P as(Formula presented.) where the Qij are given by their monomial expansion. Homogeneity adds the constraint that for every i ∈ [T], Σj deg(Qij) = n. We study an extension, where, for every i ∈ [T], the algebraic rank of the set fQi1;Qi2;Qitg of polynomials is at most some parameter k. We call this the class of Σ∏(k)Σ∏ circuits. Already for k = n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and hence k ≤ n). We study lower bounds and polynomial identity tests for such circuits and prove the following results. 1. Lower bounds. We give an explicit family of polynomials fPng of degree n in N = nO(1) variables in VNP, such that any Σ∏(n)Σ∏ circuit computing Pn has size at least exp(Ω(√nlogN)). This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits (Kayal et al. and Kumar-Saraf) as well as the Jacobian based lower bounds of Agrawal et al. which worked for Σ∏(k)Σ∏ circuits in the restricted setting where T ·k n. 2. Hitting sets. Let Σ∏(k)Σ∏[d] be the class of Σ∏(k)Σ∏ circuits with bottom fan-in at most d. We show that if d and k are at most Poly(logN), then there is an explicit hitting set for Σ∏(k)Σ∏[d] circuits of size quasipolynomially bounded in N and the size of the circuit. This strengthens a result of Forbes who constructed such quasipolynomial-size hitting sets in the setting where d and t are at most Poly(logN). A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), up to a translation, every polynomial in a set of polynomials can be written as a function of the polynomials in a transcendence basis of the set. We believe this may be of independent interest. We combine this with methods based on shifted partial derivatives to obtain our final results.
KW - Algebraic rank
KW - Arithmetic circuits
KW - Hitting sets
KW - Lower bounds
KW - Nonhomogeneous depth-4 circuits
KW - Partial derivatives
KW - Polynomial identity testing
KW - Projected shifted partials
UR - http://www.scopus.com/inward/record.url?scp=85044768128&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044768128&partnerID=8YFLogxK
U2 - 10.4086/toc.2017.v013a006
DO - 10.4086/toc.2017.v013a006
M3 - Article
AN - SCOPUS:85044768128
SN - 1557-2862
VL - 13
SP - 1
EP - 33
JO - Theory of Computing
JF - Theory of Computing
ER -