Bayes-factor-vae: Hierarchical bayesian deep auto-encoder models for factor disentanglement

Minyoung Kim, Yuting Wang, Pritish Sahu, Vladimir Pavlovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

We propose a family of novel hierarchical Bayesian deep auto-encoder models capable of identifying disentangled factors of variability in data. While many recent attempts at factor disentanglement have focused on sophisticated learning objectives within the VAE framework, their choice of a standard normal as the latent factor prior is both suboptimal and detrimental to performance. Our key observation is that the disentangled latent variables responsible for major sources of variability, the relevant factors, can be more appropriately modeled using long-tail distributions. The typical Gaussian priors are, on the other hand, better suited for modeling of nuisance factors. Motivated by this, we extend the VAE to a hierarchical Bayesian model by introducing hyper-priors on the variances of Gaussian latent priors, mimicking an infinite mixture, while maintaining tractable learning and inference of the traditional VAEs. This analysis signifies the importance of partitioning and treating in a different manner the latent dimensions corresponding to relevant factors and nuisances. Our proposed models, dubbed Bayes-Factor-VAEs, are shown to outperform existing methods both quantitatively and qualitatively in terms of latent disentanglement across several challenging benchmark tasks.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2979-2987
Number of pages9
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Cite this