Abstract
While most machine learning models can provide confidence in their predictions, confidence is insufficient to understand a prediction's reliability. For instance, the model may have a low confidence prediction if the input is not well-represented in the training dataset or if the input is inherently ambiguous. In this work, we investigate the relationship between how atypical (rare) a sample or a class is and the reliability of a model's predictions. We first demonstrate that atypicality is strongly related to miscalibration and accuracy. In particular, we empirically show that predictions for atypical inputs or atypical classes are more overconfident and have lower accuracy. Using these insights, we show incorporating atypicality improves uncertainty quantification and model performance for discriminative neural networks and large language models. In a case study, we show that using atypicality improves the performance of a skin lesion classifier across different skin tone groups without having access to the group attributes. Overall, we propose that models should use not only confidence but also atypicality to improve uncertainty quantification and performance. Our results demonstrate that simple post-hoc atypicality estimators can provide significant value.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 36 |
State | Published - 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States Duration: Dec 10 2023 → Dec 16 2023 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing