Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments

Paul S. Giller, Helmut Hillebrand, Ulrike G. Berninger, Mark O. Gessner, Stephen Hawkins, Pablo Inchausti, Cheryl Inglis, Heather Leslie, Björn Malmqvist, Michael T. Monaghan, Peter J. Morin, Gregory O'Mullan

Research output: Contribution to journalArticlepeer-review

270 Scopus citations


Recent experiments, mainly in terrestrial environments, have provided evidence of the functional importance of biodiversity to ecosystem processes and properties. Compared to terrestrial systems, aquatic ecosystems are characterised by greater propagule and material exchange, often steeper physical and chemical gradients, more rapid biological processes and, in marine systems, higher metazoan phylogenetic diversity. These characteristics limit the potential to transfer conclusions derived from terrestrial experiments to aquatic ecosystems whilst at the same time provide opportunities for testing the general validity of hypotheses about effects of biodiversity on ecosystem functioning. Here, we focus on a number of unique features of aquatic experimental systems, propose an expansion to the scope of diversity facets to be considered when assessing the functional consequences of changes in biodiversity and outline a hierarchical classification scheme of ecosystem functions and their corresponding response variables. We then briefly highlight some recent controversial and newly emerging issues relating to biodiversity-ecosystem functioning relationships. Based on lessons learnt from previous experimental and theoretical work, we finally present four novel experimental designs to address largely unresolved questions about biodiversity-ecosystem functioning relationships These include (1) investigating the effects of non-random species loss through the manipulation of the order and magnitude of such loss using dilution experiments; (2) combining factorial manipulation of diversity in interconnected habitat patches to test the additivity of ecosystem functioning between habitats; (3) disentangling the impact of local processes from the effect of ecosystem openness via factorial manipulation of the rate of recruitment and biodiversity within patches and within an available propagule pool; and (4) addressing how non-random species extinction following sequential exposure to different stressors may affect ecosystem functioning. Implementing these kinds of experimental designs in a variety of systems will, we believe, shift the focus of investigations from a species richness-centred approach to a broader consideration of the multifarious aspects of biodiversity that may well be critical to understanding effects of biodiversity changes on overall ecosystem functioning and to identifying some of the potential underlying mechanisms involved.

Original languageEnglish (US)
Pages (from-to)423-436
Number of pages14
Issue number3
StatePublished - Mar 2004

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments'. Together they form a unique fingerprint.

Cite this