Biogeochemical controls and feedbacks on ocean primary production

Paul G. Falkowski, Richard T. Barber, Victor Smetacek

Research output: Contribution to journalReview articlepeer-review

1654 Scopus citations

Abstract

Changes in oceanic primary production, linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton leads to formation of ~45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO2 levels (and hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.

Original languageEnglish (US)
Pages (from-to)200-206
Number of pages7
JournalScience
Volume281
Issue number5374
DOIs
StatePublished - Jul 10 1998

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Biogeochemical controls and feedbacks on ocean primary production'. Together they form a unique fingerprint.

Cite this