Bootstrapping apprenticeship learning

Abdeslam Boularias, Brahim Chaib-Draa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known. Empirical results on gridworlds and car racing problems show that our approach is able to learn good policies from a small number of demonstrations.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 23
Subtitle of host publication24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
StatePublished - 2010
Externally publishedYes
Event24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, Canada
Duration: Dec 6 2010Dec 9 2010

Publication series

NameAdvances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

Other

Other24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Country/TerritoryCanada
CityVancouver, BC
Period12/6/1012/9/10

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'Bootstrapping apprenticeship learning'. Together they form a unique fingerprint.

Cite this