Can ecological stoichiometry help explain patterns of biological invasions?

Angélica L. González, John S. Kominoski, Michael Danger, Seiji Ishida, Noriko Iwai, Anja Rubach

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Several mechanisms for biological invasions have been proposed, yet to date there is no common framework that can broadly explain patterns of invasion success among ecosystems with different resource availabilities. Ecological stoichiometry (ES) is the study of the balance of energy and elements in ecological interactions. This framework uses a multi-nutrient approach to mass-balance models, linking the biochemical composition of organisms to their growth and reproduction, which consequently influences ecosystem structure and functioning. We proposed a conceptual model that integrates hypotheses of biological invasions within a framework structured by fundamental principles of ES. We then performed meta-analyses to compare the growth and production performances of native and invasive organisms under low- and high-nutrient conditions in terrestrial and aquatic ecosystems. Growth and production rates of invasive organisms (plants and invertebrates) under both low- and high-nutrient availability were generally larger than those of natives. Nevertheless, native plants outperformed invasives in aquatic ecosystems under low-nutrient conditions. We suggest several distinct stoichiometry-based mechanisms to explain invasion success in low- versus high-nutrient conditions; low-nutrient conditions: higher resource-use efficiency (RUE; C:nutrient ratios), threshold elemental ratios (TERs), and trait plasticity (e.g. ability of an organism to change its nutrient requirements in response to varying nutrient environmental supply); high-nutrient conditions: higher growth rates and reproductive output related to lower tissue C:nutrient ratios, and increased trait plasticity. Interactions of mechanisms may also yield synergistic effects, whereby nutrient enrichment and enemy release have a disproportionate effect on invasion success. To that end, ES provides a framework that can help explain how chemical elements and energy constrain key physiological and ecological processes, which can ultimately determine the success of invasive organisms.

Original languageEnglish (US)
Pages (from-to)779-790
Number of pages12
JournalOikos
Volume119
Issue number5
DOIs
StatePublished - May 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics

Fingerprint

Dive into the research topics of 'Can ecological stoichiometry help explain patterns of biological invasions?'. Together they form a unique fingerprint.

Cite this