Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain

Ralf Kleene, Gabriele Loers, Gaston Castillo, Melitta Schachner

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.

Original languageEnglish (US)
Article numbere22074
JournalFASEB Journal
Volume36
Issue number1
DOIs
StatePublished - Jan 2022

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain'. Together they form a unique fingerprint.

Cite this