Cellular mRNA activates transcription elongation by displacing 7SK RNA

Tara M. Young, Michael Tsai, Bin Tian, Michael B. Mathews, Tsafi Pe'ery

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


The positive transcription elongation factor P-TEFb is a pivotal regulator of gene expression in higher cells. Originally identified in Drosophila, attention was drawn to human P-TEFb by the discovery of its role as an essential cofactor for HIV-1 transcription. It is recruited to HIV transcription complexes by the viral transactivator Tat, and to cellular transcription complexes by a plethora of transcription factors. P-TEFb activity is negatively regulated by sequestration in a complex with the HEXIM proteins and 75K RNA. The mechanism of P-TEFb release from the inhibitory complex is not known. We report that P-TEFb-dependent transcription from the HIV promoter can be stimulated by the mRNA encoding HIC, the human I-mfa domain-containing protein. The 3′-untranslated region of HIC mRNA is necessary and sufficient for this action. It forms complexes with P-TEFb and displaces 7SK RNA from the inhibitory complex in cells and cell extracts. A 314-nucleotide sequence near the 3′ end of HIC mRNA has full activity and contains a predicted structure resembling the 3′-terminal hairpin of 7SK that is critical for P-TEFb binding. This represents the first example of a cellular mRNA that can regulate transcription via P-TEFb. Our findings offer a rationale for 7SK being an RNA transcriptional regulator and suggest a practical means for enhancing gene expression.

Original languageEnglish (US)
Article numbere1010
JournalPloS one
Issue number10
StatePublished - Oct 10 2007

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Cellular mRNA activates transcription elongation by displacing 7SK RNA'. Together they form a unique fingerprint.

Cite this