Characterization of a novel small molecule subtype specific estrogen-related receptor α antagonist in MCF-7 breast cancer cells

Michael J. Chisamore, Michael E. Cunningham, Osvaldo Flores, Hilary A. Wilkinson, J. Don Chen

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Background: The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings: We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance: We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome-dependent ERRα protein degradation. Additionally, we confirmed that knocking-down ERRα lead to similar genomic effects demonstrated in vitro when treated with the ERRα specific antagonist.

Original languageEnglish (US)
Article numbere5624
JournalPloS one
Issue number5
StatePublished - May 20 2009

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Characterization of a novel small molecule subtype specific estrogen-related receptor α antagonist in MCF-7 breast cancer cells'. Together they form a unique fingerprint.

Cite this