TY - JOUR
T1 - Characterization of an evolutionarily distinct bacterial ceramide kinase from Caulobacter crescentus
AU - Dhakephalkar, Tanisha
AU - Stukey, Geordan J.
AU - Guan, Ziqiang
AU - Carman, George M.
AU - Klein, Eric A.
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/7
Y1 - 2023/7
N2 - A common feature among nearly all gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane, which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that Caulobacter crescentus can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate (CPG). Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg2+ as a cofactor. Mn2+, but no other divalent cations, could substitute for Mg2+. Under these conditions, the enzyme exhibited typical Michaelis–Menten kinetics with respect to NBD C6-ceramide (Km,app = 19.2 ± 5.5 μM; Vmax,app = 2590 ± 230 pmol/min/mg enzyme) and ATP (Km,app = 0.29 ± 0.07 mM; Vmax,app = 10,100 ± 996 pmol/min/mg enzyme). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases, which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.
AB - A common feature among nearly all gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane, which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that Caulobacter crescentus can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate (CPG). Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg2+ as a cofactor. Mn2+, but no other divalent cations, could substitute for Mg2+. Under these conditions, the enzyme exhibited typical Michaelis–Menten kinetics with respect to NBD C6-ceramide (Km,app = 19.2 ± 5.5 μM; Vmax,app = 2590 ± 230 pmol/min/mg enzyme) and ATP (Km,app = 0.29 ± 0.07 mM; Vmax,app = 10,100 ± 996 pmol/min/mg enzyme). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases, which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.
KW - ceramide
KW - ceramide 1-phosphate
KW - enzyme kinetics
KW - lipid kinase
KW - lipid metabolism
KW - microbiology
KW - sphingolipid
UR - http://www.scopus.com/inward/record.url?scp=85163424883&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163424883&partnerID=8YFLogxK
U2 - 10.1016/j.jbc.2023.104894
DO - 10.1016/j.jbc.2023.104894
M3 - Article
C2 - 37286040
AN - SCOPUS:85163424883
SN - 0021-9258
VL - 299
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 7
M1 - 104894
ER -