Characterization of c-myc 3' to 5' mRNA decay activities in an in vitro system

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The levels of mRNA and protein encoded by the c-myc protooncogene set the balance between proliferation and differentiation of mammalian cells. Thus, it is essential for the cell to tightly control c-myc expression. Indeed, cells utilize many mechanisms to control c-myc expression, including transcription, RNA processing, translation, and protein stability. We have focused on turnover of c-myc mRNA as a key modulator of the timing and level of c-myc expression. c-myc mRNA is labile in cells, and its half-life is controlled by multiple instability elements located within both the coding region and the 3'-untranslated region (3'-UTR). Much work has focused on the protein factors that bind the instability elements, yet little is known about the enzymatic activities that effect the degradation of c-myc mRNA. Here I have utilized a novel cell-free mRNA decay system to characterize the c-myc mRNA decay machinery. This machinery consists of 3' to 5' mRNA decay activities that are Mg2+-dependent, require neither exogenous ATP/GTP nor an ATP-regenerating system, and act independently of a 7mG(5')ppp(5')G cap structure to deadenylate an exogenous mRNA substrate in a c-myc 3'-UTR- dependent fashion. Following deadenylation, nucleolytic decay of the 3'-UTR occurs generating 3' decay intermediates via a ribonucleolytic activity that can assemble on the c-myc 3'-UTR in a poly(A)-independent manner.

Original languageEnglish (US)
Pages (from-to)34770-34774
Number of pages5
JournalJournal of Biological Chemistry
Volume273
Issue number52
DOIs
StatePublished - Dec 25 1998
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Characterization of c-myc 3' to 5' mRNA decay activities in an in vitro system'. Together they form a unique fingerprint.

Cite this