Abstract
Compositional stability of various vanadium oxides and oxide growth on vanadium surfaces have been studied using reactive molecular dynamics simulation methods. Vanadium dioxide (VO 2), sesquioxide (V 2O 3), pentoxide (V 2O 5), and hexavanadium tridecaoxide (V 6O 13) are studied in bulk crystalline and thin film structures, investigating charge distribution and pair distribution functions of particle interactions. The stability is estimated to be pentoxide, hexavanadium tridecaoxide, sesquioxide, and dioxide respectively in decreasing order in thin film structures. We then analyze oxide growth kinetics on vanadium (100) and (110) surfaces. The oxidation rate, stoichiometry, charge distribution, and the effect of surface orientation on kinetic phenomena are noted. In the early stages of surface oxidation of our simulation configurations, sesquioxide is found to be the dominant component. The modeling and simulation results are compared with experiments where available.
Original language | English (US) |
---|---|
Pages (from-to) | 516-522 |
Number of pages | 7 |
Journal | Surface Science |
Volume | 606 |
Issue number | 3-4 |
DOIs | |
State | Published - Feb 2012 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Materials Chemistry
Keywords
- Compositional stability
- Reactive molecular dynamics
- ReaxFF
- Vanadium oxide