Classification of EEG Data Based on the Spatio-Temporo-Rhythmic Characteristics of the Task-Discriminating Functional Sub-networks

Ali Haddad, Laleh Najafizadeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We propose a new approach that utilizes the dynamic state of cortical functional connectivity for the classification of task-based electroencephalographic (EEG) data. We introduce a novel feature extraction framework that locates functional networks in the cortex as they convene at different time intervals across different frequency bands. The framework starts by applying the wavelet transform to isolate, then augment, EEG frequency bands. Next, the time intervals of stationary functional states, within the augmented data, are identified using the source-informed segmentation algorithm. Functional networks are localized in the brain, during each segment, using a singular value decomposition-based approach. For feature selection, we propose a discriminative-associative algorithm, and use it to find the sub-networks showing the highest recurrence rate differences across the target tasks. The sequences of augmented functional networks are projected onto the identified sub-networks, for the final sequences of features. A dynamic recurrent neural network classifier is then used for classification. The proposed approach is applied to experimental EEG data to classify motor execution and motor imagery tasks. Our results show that an accuracy of 90% can be achieved within the first 500 msec of the cued task-planning phase.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2865-2868
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Classification of EEG Data Based on the Spatio-Temporo-Rhythmic Characteristics of the Task-Discriminating Functional Sub-networks'. Together they form a unique fingerprint.

Cite this