Abstract
Cohort case-control design is an efficient and economical design to study risk factors for disease incidence or mortality in a large cohort. In the last few decades, a variety of cohort case-control designs have been developed and theoretically justified. These designs have been exclusively applied to the analysis of univariate failure-time data. In this work, a cohort case-control design adapted to multivariate failure-time data is developed. A risk set sampling method is proposed to sample controls from nonfailures in a large cohort for each case matched by failure time. This method leads to a pseudolikelihood approach for the estimation of regression parameters in the marginal proportional hazards model (Cox, 1972, Journal of the Royal Statistical Society, Series B 34, 187-220), where the correlation structure between individuals within a cluster is left unspecified. The performance of the proposed estimator is demonstrated by simulation studies. A bootstrap method is proposed for inferential purposes. This methodology is illustrated by a data example from a child vitamin A supplementation trial in Nepal (Nepal Nutrition Intervention Project-Sarlahi, or NNIPS).
Original language | English (US) |
---|---|
Pages (from-to) | 764-772 |
Number of pages | 9 |
Journal | Biometrics |
Volume | 58 |
Issue number | 4 |
DOIs | |
State | Published - Dec 2002 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics
Keywords
- Bootstrap method
- Clustered failure-time data
- Cohort case-control study
- Marginal model
- Proportional hazards model
- Pseudolikelihood
- Time-matched case-control set