Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes

Sung Min Boo, Han Soon Kim, Woongghi Shin, Ga Hun Boo, Sung Mi Cho, Bok Yeon Jo, Jee Hwan Kim, Jin Hee Kim, Eun Chan Yang, Peter A. Siver, Alexander P. Wolfe, Debashish Bhattacharya, Robert A. Andersen, Hwan Su Yoon

Research output: Contribution to journalArticlepeer-review

73 Scopus citations


The global distribution, abundance, and diversity of microscopic freshwater algae demonstrate an ability to overcome significant barriers such as dry land and oceans by exploiting a range of biotic and abiotic colonization vectors. If these vectors are considered unlimited and colonization occurs in proportion to population size, then globally ubiquitous distributions are predicted to arise. This model contrasts with observations that many freshwater microalgal taxa possess true biogeographies. Here, using a concatenated multigene data set, we study the phylogeography of the freshwater heterokont alga Synura petersenii sensu lato. Our results suggest that this Synura morphotaxon contains both cosmopolitan and regionally endemic cryptic species, co-occurring in some cases, and masked by a common ultrastructural morphology. Phylogenies based on both proteins (seven protein-coding plastid and mitochondrial genes) and DNA (nine genes including ITS and 18S rDNA) reveal pronounced biogeographic delineations within phylotypes of this cryptic species complex while retaining one clade that is globally distributed. Relaxed molecular clock calculations, constrained by fossil records, suggest that the genus Synura is considerably older than currently proposed. The availability of tectonically relevant geological time (107-108 years) has enabled the development of the observed, complex biogeographic patterns. Our comprehensive analysis of freshwater algal biogeography suggests that neither ubiquity nor endemism wholly explains global patterns of microbial eukaryote distribution and that processes of dispersal remain poorly understood.

Original languageEnglish (US)
Pages (from-to)4328-4338
Number of pages11
JournalMolecular Ecology
Issue number19
StatePublished - Oct 2010

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics


  • Synura
  • Synurophyceae
  • biogeography
  • endemism
  • ubiquity hypothesis


Dive into the research topics of 'Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes'. Together they form a unique fingerprint.

Cite this