Abstract
The development of smart homes has advanced the concept of user authentication to not only protecting user privacy but also facilitating personalized services to users. Along this direction, we propose to integrate user authentication with human-computer interactions between users and smart household appliances through widely-deployed WiFi infrastructures, which is non-intrusive and device-free. In this paper, we propose $FingerPass$FingerPass which leverages channel state information (CSI) of surrounding WiFi signals to continuously authenticate users through finger gestures in smart homes. $FingerPass$FingerPass separates the user authentication process into two stages, login and interaction, to achieve high authentication accuracy and low response latency simultaneously. In the login stage, we develop a deep learning-based approach to extract behavioral characteristics of finger gestures for highly accurate user identification. For the interaction stage, to provide continuous authentication in real time for satisfactory user experience, we design a verification mechanism with lightweight classifiers to continuously authenticate the user's identity during each interaction of finger gestures. Experiments in real environments show that $FingerPass$FingerPass can achieve the authentication accuracies of 90.6 percent under in-domain scenarios and 87.6 percent under cross-domain scenarios, as well as $186.6\;ms$186.6ms response time during interactions.
Original language | English (US) |
---|---|
Pages (from-to) | 3148-3162 |
Number of pages | 15 |
Journal | IEEE Transactions on Mobile Computing |
Volume | 20 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2021 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Networks and Communications
- Electrical and Electronic Engineering
Keywords
- Continuous authentication
- WiFi signals
- finger gesture
- smart home